In a recent write-up, [David Delony] explains how he built a Wolfram Mathematica-like engine with Python. Core to the system is SymPy for symbolic math support. [David] said being able to work with ...
Abstract: Mixed linear regression (MLR) models nonlinear data as a mixture of linear components. When noise is Gaussian, the Expectation-Maximization (EM) algorithm is commonly used for maximum ...
Abstract: The purpose of this work is to improve the detection of fraud websites using Novel Linear Regression Algorithm and Recurrent Neural Network Algorithm. Materials and Methods: Novel Linear ...
This C library provides efficient implementations of linear regression algorithms, including support for stochastic gradient descent (SGD) and data normalization techniques. It is designed for easy ...
Dr. James McCaffrey presents a complete end-to-end demonstration of linear regression using JavaScript. Linear regression is the simplest machine learning technique to predict a single numeric value, ...
Dr. James McCaffrey from Microsoft Research presents a complete end-to-end demonstration of the linear support vector regression (linear SVR) technique, where the goal is to predict a single numeric ...
ABSTRACT: The alternating direction method of multipliers (ADMM) and its symmetric version are efficient for minimizing two-block separable problems with linear constraints. However, both ADMM and ...
ABSTRACT: Burundi faces major agricultural constraints, including land fragmentation, soil erosion, limited access to inputs, inadequate infrastructure and demographic pressures that exacerbate food ...